Задания для самостоятельной подготовки к тесту по квантовой теории

1. Теория измерений. Чистое состояние.

1. Какие значения a_i и с какими вероятностями p_i будут получены при измерении

наблюдаемой
$$A = \begin{pmatrix} 2/3 & i/3 \\ -i/3 & 2/3 \end{pmatrix}$$
 в состоянии с волновой функцией $|\psi\rangle = \begin{pmatrix} 1/\sqrt{10} \\ 3/\sqrt{10} \end{pmatrix}$?

2. Чему будут равны среднее значение $\langle A \rangle$ и дисперсия DA наблюдаемой $A = \begin{pmatrix} 2/3 & 1/3 \\ 1/3 & 0 \end{pmatrix}$ в состоянии с волновой функцией $|\psi\rangle = \begin{pmatrix} 1/\sqrt{3} \\ (1+i)/\sqrt{3} \end{pmatrix}$?

2. Теория измерений. Смешанное состояние.

- 1. Какие значения a_i и с какими вероятностями p_i будут получены при измерении наблюдаемой $A = \begin{pmatrix} 2/3 & i/3 \\ -i/3 & 2/3 \end{pmatrix}$ в состоянии с матрицей плотности $\rho = \begin{pmatrix} 1/2 & 1/3 \\ 1/3 & 1/2 \end{pmatrix}$?
- 2. Чему будут равны среднее значение $\langle A \rangle$ и дисперсия DA наблюдаемой $A = \begin{pmatrix} 1/13 & 2/13 \\ 2/13 & 0 \end{pmatrix}$ в состоянии с матрицей плотности $\rho = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$?

3. Осциллятор. Матричные элементы.

1. Чему равняется матричный элемент $\langle n=76 \mid xp^2 \mid n=73 \rangle$ между состояниями с определенной энергией одномерного гармонического осциллятора?

4. Осциллятор. Когерентное состояние.

1. Пусть $|\alpha\rangle$ - обобщенное когерентное состояние гармонического осциллятора. Чему равняется матричный элемент $\langle \alpha \, | \, xpx \, | \, \alpha \rangle$?

5. Формулы для операторов.

- 1. Пусть a, a^+ операторы рождения-уничтожения для гармонического осциллятора, μ некоторое число. Чему равно выражение $\exp(\mu a a^+) a^2 \exp(-\mu a a^+)$?
- 2. Пусть x, p операторы координаты и импульса, μ некоторое число. Чему равен коммутатор $[p, \cosh(\mu x 37)]$?

6. Одномерное движение

1. Как выглядит уравнение для четных уровней в яме

$$V(x < -a) = \infty$$
, $V(-a < x < a) = U_0 \delta(x - b) + U_0 \delta(x + b)$, $V(x > a) = \infty$?

2. Чему равняется коэффициент прохождения Т для потенциала V(x < 0) = 0, $V(0 < x < a) = U_0$, V(x > a) = 0?

7. Динамика

- 1. В начальный момент времени волновая функция гармонического осциллятора равнялась $|\psi(0)\rangle = \frac{1}{\sqrt{2}}|n=17\rangle + \frac{1}{\sqrt{2}}|n=53\rangle$. Чему будет равняться волновая функция $|\psi(t)\rangle$ в момент времени t ?
- 2. Рассмотрим одномерный гармонический осциллятор $H = \hbar\omega \left(a^+ a + \frac{1}{2}\right)$. Для этой системы найти решение уравнения Гайзенберга для оператора уничтожения a(t).
- 3. В начальный момент времени волновая функция системы равна $|\psi\rangle = \begin{pmatrix} 1/\sqrt{3} \\ (1+i)/\sqrt{3} \end{pmatrix}$.

Гамильтониан системы равен $H=\begin{pmatrix} 0 & -i\hbar\omega \\ i\hbar\omega & 0 \end{pmatrix}$. Чему равна волновая функция системы в момент времени t ?