Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Гольтяев Н.К.	301		•	12	6	
Nº	Время	Правильность	Раздел			
	1 0:00:45		3. Прямоуголы	ная потенциаль	ная яма	
	2 0:01:42		4. Туннельный			
	3 0:02:38		5. Гармоничесі	_ ' '		
	4 0:04:56		10. Сверхтонка		мных спектров	
	5 0:08:40		2. Волны деБр			
	6 0:09:11		1. Равновесное		чение	
	7 0:14:21		11. Эффекты 3			
	8 0:15:06		7. Стационарн			l
	9 0:15:19		6. Нестационар			171
1	0:13:13		8. «Одноэлект		шредингера	
<u> </u>			9. Правила Хун			
	2 0:21:48		12. Опыт Штер			
Кормакова П.А.	301	36		12	9	
N º	Время	Правильность				
	1 0:02:15		9. Правила Хун			
	2 0:04:33		6. Нестациона		шредингера	
	3 0:05:22		8. «Одноэлект		<u></u>	
	4 0:16:14		11. Эффекты 3		на-Бака	
	5 0:16:39		2. Волны деБр			
	6 0:23:18	33	10. Сверхтонка	я структура атс	мных спектров	
	7 0:25:01	33	1. Равновесное	е тепловое излу	чение	
	8 0:25:17	100	3. Прямоуголы	ная потенциаль	ная яма	
	9 0:25:53	100	7. Стационарн	ые и нестацион	арные состояни	1Я
1	0 0:26:12		5. Гармоничесі			
1			4. Туннельный			
	2 0:31:09		12. Опыт Штер			
Потапов А.М.	301	36		12	2	
Nº	Время	Правильность				
· ·	1 0:01:09		11. Эффекты 3	веемана и Паше	ена-Бака	
	2 0:02:27		5. Гармоничесі			
	3 0:04:30		9. Правила Хун			
	4 0:07:29		3. Прямоуголы		L да дма	
	5 0:09:09		7. Стационарн			<u> </u>
	6 0:09:29					
			10. Сверхтонка			
			6. Нестациона		шредингера	
	8 0:12:48		12. Опыт Штер	•		
	9 0:16:25		4. Туннельный	_ ' '		
	0 0:18:40		2. Волны деБр			
1	_		1. Равновесно	,	чение	
	2 0:20:22		8. «Одноэлект			
Рубашная Д.С.	301			12	7	
Nº	Время		Раздел			
	1 0:04:46		1. Равновесное			
	2 0:16:37		11. Эффекты 3			
	3 0:21:13	0	5. Гармоничес	кий осциллятор		
	4 0:26:02	0	7. Стационарн	ые и нестацион	арные состояни	19
	5 0:31:51		8. «Одноэлект			
	6 0:33:36		10. Сверхтонка			
	7 0:34:29		6. Нестациона			
	/ U.J4.Z5	100		71	1 11 77	
				нда		
	8 0:35:37	100	9. Правила Хун		ная яма	
1	8 0:35:37 9 0:40:29	100 100	9. Правила Хун 3. Прямоуголы	ная потенциаль	ная яма	
	8 0:35:37	100 100 33	9. Правила Хун	ная потенциаль ойля	ная яма	

Страница 2 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Ковальская Т.Е.	302	36	25	12	7	3
Nº	Время	Правильность	_		-	
.,-	1 0:05:44		7. Стационарн	че и нестапион	арные состояни	I 1Я
	2 0:08:54		5. Гармоническ			<u> </u>
	3 0:11:27		8. «Одноэлектр			
	4 0:22:16		12. Опыт Штер			
	5 0:22:49		1. Равновесное		I VUALIMA	
	6 0:23:34		3. Прямоуголы			
	7 0:26:19		9. Правила Хун		TIGA AING	
	8 0:29:49		4. Туннельный			
	9 0:30:29				Шропингоро	
			6. Нестационар			
			10. Сверхтонка			
	0:36:49		11. Эффекты 3		ена-бака т	
	0:39:06		2. Волны деБро			
Коньков А.Е.	302			12	4	2
Nº	Время	Правильность				
	1 0:01:02		3. Прямоуголы		ная яма	
	2 0:03:29		2. Волны деБро			
	3 0:07:03		8. «Одноэлектр			
	4 0:18:02		11. Эффекты 3			
	5 0:21:10	33	6. Нестационар	оное уравнение	Шредингера	
	6 0:26:56	0	10. Сверхтонка	я структура ато	мных спектров	
	7 0:35:34		12. Опыт Штер			
	8 0:54:04		9. Правила Хун			
	9 0:55:52		4. Туннельный			
	0:58:44		7. Стационарн		арные состояни	 1Я
	1:01:01		1. Равновесное			<u> </u>
	1:01:22		5. Гармоническ			
Красавин Д.И.	302			ии ооцивии ор 12		2
№	Время	Правильность		12		
112	1 0:03:47		3. Прямоугольн	ISO DOTOUINSDE	lad dwa	
	2 0:05:27		7. Стационарн			<u> </u>
	3 0:15:09		6. Нестационарна			īя I
	4 0:17:00		4. Туннельный		: шредингера І	
			•			
	5 0:18:33		8. «Одноэлектр			
	6 0:25:02		10. Сверхтонка		омных спектров Т	
	7 0:27:13		2. Волны деБро			
	8 0:33:04		1. Равновесное		/чение	
	9 0:36:36		9. Правила Хун			
	0:38:17		5. Гармоническ			
	0:46:07		11. Эффекты 3		ена-ьака	
	0:55:41		12. Опыт Штер			
Ратушный Г.О.	302			12	7	4
Nº	Время	Правильность				
	1 0:00:45		8. «Одноэлектр			
	2 0:02:54		9. Правила Хун			
	3 0:04:24		6. Нестационар			
	4 0:05:18		5. Гармоническ			
	5 0:07:16	100	10. Сверхтонка	я структу <mark>ра ат</mark> с	омных спектров	
	6 0:08:10		7. Стационарны			
	7 0:09:01		1. Равновесное		•	
	8 0:10:36		2. Волны деБро			
	9 0:23:03		3. Прямоуголы		ная яма	
	0:25:47		4. Туннельный		,	
	0:27:13		11. Эффекты 3		ена-Бака	
	0:27:18		12. Опыт Штер		J. G. Dana	
	0.29.20	100	тъ. Опыт штер	па и герпала	<u> </u>	

Страница 3 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Фокеев А.И.	302	36	-	12	_	2
Nº	Время	Правильность	_		_	_
1	0:00:22		8. «Одноэлектр	онные» атомы		
2	0:05:46		2. Волны деБр			
3	0:09:53		6. Нестационар		: Шредингера	
4	0:12:59		4. Туннельный		родора	
5	0:17:36		11. Эффекты 3		- ена-Бака	
6	0:23:01		1. Равновесное			
7	0:25:05		7. Стационарн			<u>. </u>
8	0:29:04		9. Правила Хун		 	
9	0:33:19		10. Сверхтонка		і МНЫХ СПЕКТООВ	
10	0:35:29		5. Гармоническ			
11	0:36:21		3. Прямоуголы			
12	0:38:50		12. Опыт Штер		1.6.7. 7	
Черкашин И.С.	302	36	•	12	3	2
Nº	Время	Правильность				_
1	0:03:53		10. Сверхтонка	IS CTOVKTVOA ATO	иных спектров	
2	0:08:49		5. Гармоническ			
3	0:20:05		12. Опыт Штер			
4	0:25:19		3. Прямоуголы		наа ама 	
5	0:29:21		4. Туннельный		TIGAT AINIG	
6	0:30:58		1. Равновесное		L LUBUMB	
7	0:32:23		8. «Одноэлектр			
8	0:35:02		6. Нестационар			
9	0:39:09		11. Эффекты 3			
10	0:39:09		7. Стационарн			<u> </u>
11	0:43:31		9. Правила Хун		арные состояни І	IN
12	0:45:12		2. Волны деБр			
кондратенко Д.С.	303	36	•	лиля 12	3	2
кондратенко д.с. №	Время	Правильность		12	3	
1	0:02:37		5. Гармоническ	ий осшиппатор		
2	0:02:37		12. Опыт Штер			
3	0:06:37		10. Сверхтонка		MULIX CHAVENOR	
4	0:50:46		9. Правила Хун		Імпых спектров	
5			7. Стационарн	• •	SULLIS COCTOGUI	10
6	0:58:21		7. Стационарна 8. «Одноэлектр			и
7	0:58:42		3. Прямоугольн			
8	0:59:03		1. Равновесное			
9	1:01:00		4. Туннельный		Т	
10	1:02:46		 туннельный Нестационар 		Препипсера	
11	1:05:12		11. Эффекты 3			
12	1:05:57		2. Волны деБр		Jiu-Daka	
литовский Д.В.	303	36		лиля 12	3	2
литовский д.в. №	Время	Правильность		12	3	
1	0:02:08		7. Стационарн	JE N HECTSUMOU	I ADHNE COCTOBUI	I
2	0:04:36		4. Туннельный			171
3	0:04:50		 1 уннельный Нестационар 		I Шпелицгера	
4	0:08:53		9. Правила Хун		- шродингера	
5	0:00:33		5. Гармоническ			
6	0:11:14		10. Сверхтонка			
7	0:16:58		11. Эффекты 3			
8	0:19:16		3. Прямоуголы			
9	0:19:16					
10	0:20:52		 «Одноэлектр Волны деБро 			
10					(101140	
	0:28:31		1. Равновесное		/чение Г	
12	0:52:30	100	12. Опыт Штер	на и герлаха		

Страница 4 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Преснов Д.А.	303	36	26	12	8	4
<u>N</u> º	Время	Правильность				-
1	0:04:25		6. Нестационар	ное уравнение	Шредингера	
2	0:08:26		9. Правила Хун		шродин ора	
3	0:20:44		8. «Одноэлектр			
4	0:24:54		2. Волны деБро			
5	0:26:29		3. Прямоугольн		L да дма	
6	0:26:54		1. Равновесное			
7	0:29:22		7. Стационарны			l
8	0:39:30		4. Туннельный		арпыс состояни	1/1
9	0:43:33		10. Сверхтонка		MULIV CHAVTOOR	
10	0:46:53		5. Гармоническ			
11	0:53:30		11. Эффекты 3			
12	0:57:37		12. Опыт Штер		па-рака	
	303	36		<u>на и герлаха</u> 12	c	2
Слободчиков И.М. №				12	6	3
1 1	Время	Правильность		10.14.110.07.01114.011	0011110 000709111	<u> </u>
1	0:03:19		7. Стационарны			IN .
2	0:05:09		5. Гармоническ			
3	0:09:09		3. Прямоугольн		ная яма	
4	0:13:55		9. Правила Хун		=	
5	0:15:12		11. Эффекты 3			
6	0:18:56		1. Равновесное		чение	
7	0:33:07		12. Опыт Штер			
8	0:35:33		4. Туннельный			
9	0:37:54		10. Сверхтонка		мных спектров	
10	0:43:43		2. Волны деБро			
11	0:48:17		8. «Одноэлектр			
12	0:50:05		6. Нестационар	• •		
Снизинов И.Г.	303	36		12	7	3
Nº	Время	Правильность				
1	0:01:36		4. Туннельный			
2	0:04:38		9. Правила Хун			
3	0:10:41		6. Нестационар		Шредингера	
4	0:30:27		12. Опыт Штер	•		
5	0:37:15		3. Прямоугольн			
6	0:40:27		7. Стационарны			
7	0:46:47		10. Сверхтонка			
8	0:49:31		11. Эффекты 3		ена-Бака	
9	0:53:47		2. Волны деБро			
10	0:59:12		5. Гармоническ			
11	1:03:32		8. «Одноэлектр			
12	1:06:04		1. Равновесное			
Тимербулатов Д.Р.	304	36		12	2	2
Nº	Время	Правильность				
1	0:02:36		9. Правила Хун			
2	0:09:09		7. Стационарны			19
0	0:10:32	0	8. «Одноэлектр	онные» атомы		
3			2. Волны деБро			
4	0:14:30	0	<u> =: = о: :::::: до = р</u> .			l —
	0:14:30 0:16:48		1. Равновесное	<u>тепловое</u> излу	<u>чение</u>	
4		0				
4 5	0:16:48	0 100	1. Равновесное	ное уравнение	Шредингера	
4 5	0:16:48 0:22:10	0 100 33	1. Равновесное 6. Нестационар 3. Прямоугольн	оное уравнение ная потенциаль	Шредингера ная яма	
4 5 6 7	0:16:48 0:22:10 0:26:54	0 100 33 33	1. Равновесное 6. Нестационар 3. Прямоугольн 10. Сверхтонка	рное уравнение ная потенциаль я структура атс	Шредингера ная яма эмных спектров	
4 5 6 7 8	0:16:48 0:22:10 0:26:54 0:28:11	0 100 33 33 0	1. Равновесное 6. Нестационар 3. Прямоугольн 10. Сверхтонка 5. Гармоническ	рное уравнение ная потенциаль я структура атс ий осциллятор	Шредингера ная яма эмных спектров	
4 5 6 7 8 9	0:16:48 0:22:10 0:26:54 0:28:11 0:30:37	0 100 33 33 0 0	1. Равновесное 6. Нестационар 3. Прямоугольн 10. Сверхтонка	оное уравнение ная потенциаль я структура атс ний осциллятор еемана и Паше	Шредингера ная яма эмных спектров	

Страница 5 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Торрэс К	304	36	14	12	3	
Nº	Время	Правильность				-
114	1 0:03:54		3. Прямоуголы	ная потенциаль	ная яма	
	2 0:13:21		4. Туннельный			
	3 0:15:45		11. Эффекты 3		ш Рна-Бака	
	4 0:17:35		9. Правила Хун		Jila Baka	
	5 0:18:22		5. Гармоническ			
	6 0:21:40		1. Равновесное	•		
	7 0:25:37		10. Сверхтонка			
	0:29:21		7. Стационарн			
	9 0:30:36					IЯ I
1			8. «Одноэлектр			
			2. Волны деБро		Шропингоро	
1			6. Нестационар		шредингера	
1			12. Опыт Штер			
Гладилин А.А.	305	36		12	3	7
Nº	Время	Правильность				
	1 0:04:52		10. Сверхтонка		мных спектров	
	2 0:15:03		2. Волны деБро			
	3 0:20:48		9. Правила Хун			
	4 0:23:26		3. Прямоугольн			
	5 0:29:34	33	1. Равновесное	тепловое излу	/чение	
	0:34:12	33	4. Туннельный	эффект		
	7 0:45:59		11. Эффекты 3		ена-Бака	
	0:48:57		7. Стационарны			1Я
	9 0:59:02		6. Нестационар			
1			5. Гармоническ			
1			8. «Одноэлектр			
1			12. Опыт Штер			
Нестеров А.С.	305	36		12	2	
Nº	Время	Правильность	_	12		<u>'</u>
1/12	1 0:02:14		5. Гармоническ	ий осшиния		
	2 0:04:17		3. Прямоуголы			<u> </u>
	3 0:07:31		7. Стационарны	•	•	19 1
	4 0:09:38		1. Равновесное		/чение Г	
	5 0:11:13		9. Правила Хун		<u> </u>	
	6 0:12:58		11. Эффекты 3			
	7 0:13:57		10. Сверхтонка			
	0:14:20		8. «Одноэлектр			
	9 0:15:40		12. Опыт Штер			
1			2. Волны деБро			
1			6. Нестационар		Шредингера	
1			4. Туннельный			
Пузанов Г.А.	305	36		12	3	
Nº	Время	Правильность	Раздел			
	1 0:03:51		1. Равновесное	е тепловое излу	/чение	
	2 0:09:01		3. Прямоуголы			
	3 0:14:49		12. Опыт Штер			
	4 0:18:30		9. Правила Хун			
	5 0:23:16		4. Туннельный			
	6 0:25:17		5. Гармоническ			
	7 0:34:39		11. Эффекты 3			
	0:38:40		7. Стационарн			<u>.</u> 1Я
	9 0:48:12		6. Нестационарна			171
1						
			8. «Одноэлектр			
1	1 0:57:40	ı 0	10. Сверхтонка	я структура атс	омных спектров	ĺ
1			2. Волны деБро		1	

Страница 6 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Руденко Н.Г.	305	36	8	12	1	2
Nº	Время	Правильность			-	_
, , , , , , , , , , , , , , , , , , , 	1 0:02:36		9. Правила Хун	ила		
	2 0:03:11		10. Сверхтонка			
	3 0:08:25		6. Нестационар			
	4 0:16:19		8. «Одноэлектр			
	5 0:18:16		7. Стационарні			<u> </u> иа
	6 0:27:20		2. Волны деБр		арпыс состояни І	1/1
	7 0:27:50		12. Опыт Штер			
	8 0:37:24		3. Прямоуголы		Had dwa	
	9 0:38:18		4. Туннельный		пая яма	
1			•		L. Fore	
1			11. Эффекты 3			
			1. Равновесное			
1			5. Гармоничесь			
Федоров Д.О.	305	36		12	6	2
Nº	Время	Правильность				
	1 0:09:33		2. Волны деБр		<u> </u>	
	2 0:19:24		6. Нестационар			
	3 0:22:52		7. Стационарн			19
	4 0:23:20		5. Гармоничесь			
	5 0:28:58	100	4. Туннельный	эффект		
	6 0:30:47	100	3. Прямоуголы	ная потенциаль	ная яма	
	7 0:31:36	100	8. «Одноэлектр	онные» атомы		
	8 0:34:49	100	9. Правила Хун	ıда		
	9 0:50:47	0	10. Сверхтонка	я структура ато	мных спектров	
1			11. Эффекты 3			
1			1. Равновесное			
1			12. Опыт Штер			
Чадова Е.А.	305	36		12	4	2
Nº	Время	Правильность			7	_
11-	1 0:02:39		12. Опыт Штер	L на и Геппауа		
	2 0:05:58		8. «Одноэлектр			
	3 0:19:02		6. Нестационар			
	4 0:29:53		10. Сверхтонка			
					линых спектров І	
	5 0:32:37		9. Правила Хун			
	6 0:38:14		1. Равновесное	/		
	7 0:42:01		5. Гармоничесь			
	8 0:49:10		2. Волны деБр			
	9 0:51:11		4. Туннельный			
1			7. Стационарні			19
1			11. Эффекты 3			
1			3. Прямоуголы			
Шморгилов Ф.К.	305	36		12	3	2
Nº	Время	Правильность				
	1 0:23:26		10. Сверхтонка		мных спектров	
	2 0:23:49		2. Волны деБр			
	3 0:27:04		8. «Одноэлектр			
	4 0:27:59	33	1. Равновесное	е тепловое излу	/чение	
	5 0:30:28	0	4. Туннельный	эффект		
	6 0:32:05	33	5. Гармоничесь	ий осциллятор		
	7 0:33:14		11. Эффекты 3			
	8 0:40:11		3. Прямоуголы			
	9 0:45:00		12. Опыт Штер			
1			7. Стационарн		арные состоянь	19
1			6. Нестационар			<u>. </u>
	2 0:56:06		9. Правила Хун	• • • • • • • • • • • • • • • • • • • •	родингора	
	- ₁ 0.00.00	ı	го. гтравина луг	ıдu	l .	I

Страница 7 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Давыдова А.А.	306	36	18	12	5	2
Nº	Время	Правильность	_			_
1	0:04:25		3. Прямоугольн	ая потенциаль	ная яма	
2			5. Гармоническ			
3			6. Нестационар			
4			7. Стационарны			<u>. </u>
5			10. Сверхтонка			
6			1. Равновесное			
7			9. Правила Хун		1011110	
8			2. Волны деБро			
9			8. «Одноэлектр			
10			4. Туннельный			
11	0:41:02		11. Эффекты 3	<u> </u>	L Lua-Fara	
12			12. Опыт Штер		na-baka	
Коровушкин А.Е.	306	36		12	3	2
коровушкин А.Е. №	Время	Правильность		12	3	
1	0:04:40		7. Стационарны	IO IA LIGOTALIAGU	anuu o coctoguu	10
2			8. «Одноэлектр		арные состояни І	īя I
3			2. Волны деБро			
					IIIn a suurana	
4			6. Нестационар			
5			5. Гармоническ			
6			4. Туннельный			
7			1. Равновесное			
8			10. Сверхтонка		мных спектров	
9			9. Правила Хун			
10			3. Прямоугольн			
11			11. Эффекты 3		ена-Бака	
12			12. Опыт Штер	•		
Костырко О.Ю.	306	36	_	12	2	2
Nº	Время	Правильность				
1	0:10:19		2. Волны деБро			
2			9. Правила Хун			
3			4. Туннельный			
4			3. Прямоугольн		ная яма	
5			12. Опыт Штер			
6			10. Сверхтонка			
7			1. Равновесное			
8			6. Нестационар			
9			7. Стационарны			1Я
10			5. Гармоническ			
11			11. Эффекты 3			
12			8. «Одноэлектр			
Мусатов М.А.	306	36		12	3	2
Nº	Время	Правильность				
1	0:02:53		1. Равновесное	.		
2			3. Прямоугольн		ная яма	
3			2. Волны деБро			
4			5. Гармоническ			
5		100	4. Туннельный	эффект		
6			6. Нестационар			
7	0:17:15	100	7. Стационарны	ые и нестацион	арные состояни	1Я
	0:18:58		11. Эффекты 3			
8					7	
<u> </u>			12. Опыт Штер	на и Герлаха		
	0:24:54	0	12. Опыт Штер 10. Сверхтонка		мных спектров	
9	0:24:54 0:28:33	0		я структура атс		

Страница 8 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Овечкин К.А.	306	36	18	12	4	2
Nº	Время	Правильность			-	_
	1 0:05:23		8. «Одноэлектр	онные» атомы		
	2 0:10:53		10. Сверхтонка			
	3 0:12:00		4. Туннельный	, , ,,		
	4 0:14:11		5. Гармоническ			
	5 0:19:14		1. Равновесное			
	6 0:21:27		11. Эффекты 3			
	7 0:23:52		9. Правила Хун		Jila Baka	
	0:34:45		3. Прямоуголы		ная яма	
	9 0:43:23		2. Волны деБр		Tiazi ziivia	
1			7. Стационарн		I	l
1			6. Нестационар			171
1			12. Опыт Штер		шредингера	
Скрипов А.В.	307	36	•	12	4	
Nº	Время	Правильность		12	4	
1/12	1 0:06:07		4. Туннельный	adadaya		
			•		MILLIV ORGESTS CE	
			10. Сверхтонка		линых спектров І	
	0:36:09 0:41:06		8. «Одноэлектр			
			2. Волны деБр			
	0:42:21		5. Гармоническ			
	6 0:44:26		3. Прямоуголы			
	7 0:46:22		6. Нестационар			
	8 0:52:38		1. Равновесное			
	9 0:53:47		7. Стационарны		арные состояни	1Я
1			9. Правила Хун			
1			11. Эффекты 3		ена-Бака	
1:			12. Опыт Штер			
Анциферов Д.В.	308	36		12	3	2
Nº	Время	Правильность				
	1 0:02:40		5. Гармоническ			
	2 0:14:35		4. Туннельный			
	3 0:19:07		3. Прямоуголы			
	4 0:23:30		6. Нестационар	•		
	5 0:27:22		7. Стационарны		арные состояни	1Я
	6 0:30:32		9. Правила Хун			
	7 0:33:36		2. Волны деБро			
	8 0:41:12		8. «Одноэлектр			
	9 0:47:04		11. Эффекты 3		на-Бака	
1			12. Опыт Штер			
1			1. Равновесное			
1			10. Сверхтонка			
Будур А.М.	308	36		12	0	2
Nº	Время	Правильность				
	1 0:12:42		11. Эффекты 3			
	2 0:18:57		5. Гармоническ			
	3 0:23:17		4. Туннельный			
	4 0:33:16		2. Волны деБро			
	5 0:42:18		7. Стационарны			1Я
	6 0:46:16		8. «Одноэлектр			
	7 0:53:22	0	12. Опыт Штер	на и Герлаха		
	8 0:54:57	0	9. Правила Хун			
	9 1:00:14	0	1. Равновесное	е тепловое излу	чение	
1	1:00:49			,	мных спектров	
	1.00.43		TO. OBCPATORING	,,, 0, p ,,,,, pa a.,		
1			6. Нестационар			

Страница 9 из 19

Фамилия И.О.		Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Зуга В.А.		308	36		. 12		
Nº		Время	Правильность				•
	1	0:03:34		3. Прямоуголы	ная потенциаль	ная яма	
	2	0:05:33		6. Нестационар			
	3	0:11:18		10. Сверхтонка			
	4	0:11:38		1. Равновесное			
	5	0:13:27		4. Туннельный		ICTIVIC	
	6	0:14:33		5. Гармоническ	<u> </u>		
	7	0:16:12		7. Стационарн			<u> </u> иа
	8	0:19:19		9. Правила Хун		арные состояни І	1 <i>n</i>
	9	0:34:21		11. Эффекты 3		L La Fara	
	10	0:40:13		12. Опыт Штер		гна-рака Т	
	11	0:41:43		12. Опыт штер 8. «Одноэлектр			
	12	0:41:57					
Communication III Communication	12			2. Волны деБр			,
Смирнов Н.О. №		308	36		12	6	4
I√ō	4	Время 0:06:58	Правильность				<u> </u>
	1			7. Стационарн			
	2	0:09:09		10. Сверхтонка		омных спектров	
	3	0:11:19		4. Туннельный			
	4	0:15:31		2. Волны деБр			
	5	0:18:23		8. «Одноэлектр			
	6	0:24:26		1. Равновесное		/чение	
	7	0:29:29		9. Правила Хун			
	8	0:31:04		11. Эффекты 3			
	9	0:35:09	100	3. Прямоуголы	ная потенциаль	ная яма	
	10	0:44:14	33	12. Опыт Штер	на и Герлаха		
	11	0:46:43	0	5. Гармоничесь	кий осциллятор		
	12	0:54:32	100	6. Нестационар	оное уравнение	: Шредингера	
Столяров А.А.		308	36	19	12	5	
Nº		Время	Правильность	Раздел			
	1	0:00:26		8. «Одноэлектр	онные» атомы		
	2	0:00:47		11. Эффекты 3			
	3	0:02:34		9. Правила Хун			
	4	0:05:51		5. Гармоническ			
	5	0:07:45		10. Сверхтонка			
	6	0:11:17		7. Стационарн			
	7	0:24:40		1. Равновесное		•	
	8	0:34:39		6. Нестационар			
	9	0:42:17		2. Волны деБр	• •	і шредингера І	
	10	0:44:22		3. Прямоуголы		LIZO OM2	
	11	0:44:22		3. гтрямоуголы 4. Туннельный		пан има	
	12	0:45.20		12. Опыт Штер			
Сысоев В.В.	ı۷	308	33		на и герлаха 12	1	-
Vo	_				12	1	<u> </u>
IN≃	1	Время 0:01:53	Правильность		COMOUS 4 Dawn	LIO FOYO	
	1	0:01:53		11. Эффекты 3			
	2	0:02:57		1. Равновесное			
	3	0:05:54		3. Прямоуголы			
	4	0:06:23		5. Гармоничесь			
	5	0:11:41		6. Нестационар		шредингера	
	6	0:20:29		9. Правила Хун	• •		
	7	0:23:40		8. «Одноэлектр			
	8	0:32:34		4. Туннельный	_ ' '		
	9	0:36:02		10. Сверхтонка			
	10	0:54:39		7. Стационарн		арные состояні	1Я
	11	0:56:08		2. Волны деБр			
	12	0:59:17		12. Опыт Штер	_		1

Страница 10 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Елисеев С.В.	309	36	19	12	6	2
Nº	Время	Правильность	Раздел			
1	0:04:14		6. Нестационар	ное уравнение	Шредингера	
2			3. Прямоугольн			
3			1. Равновесное			
4			4. Туннельный			
5			9. Правила Хун			
6			7. Стационарнь		арные состояни	1Я
7	0:19:41		2. Волны деБро		 	
8			11. Эффекты 3		- ена-Бака	
9			5. Гармоническ			
10			10. Сверхтонка			
11	0:33:33		8. «Одноэлектр			
12			12. Опыт Штер			
Назарова В.С.	309	36	•	12	6	3
Nº	Время	Правильность		14		<u> </u>
1	0:02:47		9. Правила Хун	По		
2			12. Опыт Штер			
3			3. Прямоугольн		LIOG GMO	
4			2. Волны деБро		ная яма	
5						
			5. Гармоническ			
6			6. Нестационар			
7	0:58:08		8. «Одноэлектр			
8			11. Эффекты 3			
9			7. Стационарны		арные состояни г	1Я I
10			4. Туннельный			
11	1:05:11		1. Равновесное			
12	1:06:19		10. Сверхтонка			
Ситанский С.И.	309	36		12	/	3
Nº	Время	Правильность				
1	0:04:24		1. Равновесное		/чение	
2			4. Туннельный			
3			5. Гармоническ			
4			11. Эффекты 3			
5			10. Сверхтонка			
6			6. Нестационар		: Шредингера	
7			12. Опыт Штері			
8			2. Волны деБро			
9			9. Правила Хун			
10			3. Прямоугольн			
11			8. «Одноэлектр			
12			7. Стационарны			_
Антипин А.М.	310	36		12	5	2
Nº	Время	Правильность				
1	0:04:29		1. Равновесное			
2	0:08:22		10. Сверхтонка			
3			7. Стационарны		•	1Я
4			6. Нестационар		Шредингера	
5			12. Опыт Штер			
	0:43:11		8. «Одноэлектр			
6			111 Ododovaru O	еемана и Паше	ена-Бака	
7	0:44:00					
6 7 8			5. Гармоническ			
7	0:45:25	100		ий осциллятор		
	0:45:25 0:57:05	100 33	5. Гармоническ	ий осциллятор ойля		
7 8 9	0:45:25 0:57:05 1:02:51	100 33 100	5. Гармоническ 2. Волны деБро	ий осциллятор ойля да		

Страница 11 из 19

Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
310	36	21	12	7	3
				-	
			на и Герпаха		
			•		
					10
					і л
.				: шредингера І	
				LIO FORO	
			12	5	
_			/		
		•	• •		
0:33:28	0	10. Сверхтонка	я структура ато	мных спектров	
0:42:21	100	5. Гармоническ	ий осциллятор		
0:46:41					
0:56:13	100	7. Стационарнь	ые и нестацион	арные состояни	ІЯ
				1.0.7. 70	
			•	4	-
				-	-
			эффект		
		•		/UALIAA	
.					
					או
.					
				-	
			12	9	4
.					
				/чение	
0:17:06	100	4. Туннельный	эффект		
0:17:39	100	5. Гармоническ	ий осциллятор		
	100	6 Нестационал	ное уравнение	: Шредингера	
0:19:23	100	о. пестационар		Profit of Profit	
0:19:23		11. Эффекты 3			
	33	11. Эффекты 3	еемана и Паше		
0:20:00	33 100		еемана и Паше на и Герлаха	ена-Бака 	
	Время 1	Время Правильность 1 0:08:02 100 2 0:09:37 100 3 0:13:19 0 4 0:16:47 100 5 0:17:13 100 6 0:18:10 100 7 0:21:01 100 8 0:22:16 0 9 0:23:35 0 1 0:38:12 100 1 0:38:12 100 2 0:39:21 0 1 0:38:12 100 2 0:39:21 0 2 0:39:21 0 3 0:18:38 33 4 0:22:05 100 5 0:33:28 0 7 0:42:21 100 6 0:33:28 0 7 0:42:21 100 6 0:33:28 0 7 0:42:21 100 8 0:56:13 100 6 0:33:28 0 7 0:42:21 100 8 0:56:13 100 6 0:33:28 0 7 0:42:21 100 8 0:56:13 100 9 0:56:13 100 1 1:02:32 0 1 1:06:24 0 2 1:09:08 0 2 1:09:08 0 3 311 36 8 Время Правильность 1 0:03:53 100 0 1:02:32 0 1 1:06:24 0 2 1:09:08 0 3 0:18:05 0 6 0:18:05 0 7 0:20:00 0 8 0:33:38 100 0 0:35:16 0 0 0:35:16	310 36 21	310 36 21 12 12 12 12 12 12 1	Время Правильность Раздел 1 0.08:02 100 12. Олыт Штерна и Герлаха 2 0.09:37 100 8. «Одноэлектронные» атомы 3 0.13:19 0 9. Правила Хунда 4 0:16:47 100 4. Туннельный эффект 5 0:17:13 100 5. Гармонический осциплятор 6 0:18:10 100 3. Прямоугольная потенциальная яма 7 0:21:01 100 7. Стационарные и нестационарные состояни 8 0:22:16 0 6. Нестационарные уравнение Шредингера 9 0:23:35 0 2. Волны деБройля 1 0:38:12 100 10. Сверхтонкая структура атомных спектров 2 0:39:21 0 1. Равновесное тепловое излучение 3 310 36 16 12 5 8 100:549 0 1. Равновесное тепловое излучение 1 100:549 0 1. Равновесное тепловое излучение 1 0:05:49 0 1. Равновесное тепловое излучение 1 1 1 2 1 0:05:49 0 1. Равновесное тепловое излучение 1 0 1

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка	
Нескородов А.В.	311	36	27	12	8	4	
Nº	Время	Правильность					
,	0:01:33		2. Волны деБро	 Риля			
			6. Нестационар				
			10. Сверхтонка				
			12. Опыт Штер				
Į.			5. Гармоническ				
(9. Правила Хун				
	0:31:02		3. Прямоуголы		Had dwa		
			7. Стационарн			l	
			4. Туннельный		І — — — — — — — — — — — — — — — — — — —	1 <i>7</i> 1	
10			11. Эффекты 3		l Na Fara		
11			8. «Одноэлектр				
12			1. Равновесное				
	311	36		-		2	
Петрова А.А. №				12	6		
IN≌	Время	Правильность		a da da a			
	0:08:22		4. Туннельный				
			9. Правила Хун				
3			12. Опыт Штер		<u> </u>		
4			11. Эффекты 3				
			1. Равновесное		/чение		
(2. Волны деБро				
		0	10. Сверхтонка	я структура атс	мных спектров		
8	0:38:00		5. Гармоническ				
Ç	0:40:26	100	6. Нестационар	оное уравнение	Шредингера		
10	0:42:13	100	8. «Одноэлектр	онные» атомы			
11	0:46:13	100	7. Стационарны	ые и нестацион	арные состояни	1Я	
12	0:49:00	0	0 3. Прямоугольная потенциальная яма				
Сигаева М.В.	311	36	23	12	7	3	
Nº	Время	Правильность	Раздел				
,	0:06:28	0	6. Нестационар	оное уравнение	Шредингера		
2	0:14:33		10. Сверхтонка				
			3. Прямоуголы				
			2. Волны деБр				
ļ			9. Правила Хун				
(11. Эффекты 3		- ена-Бака		
	0:27:06		7. Стационарн			I	
			1. Равновесное				
(5. Гармоническ				
10			4. Туннельный				
11			8. «Одноэлектр				
12			12. Опыт Штер				
Целебровский А.Н.	311	33 36		на и герлаха 12	5	2	
				12	5		
Nº	Время	Правильность		(4) AAU 45555			
	0:03:58		5. Гармоническ				
2			2. Волны деБро				
3			10. Сверхтонка				
4			7. Стационарны		<u> </u>	19 I	
			3. Прямоуголы		ная яма		
(9. Правила Хун				
-	0:23:41		4. Туннельный				
}			6. Нестационар		Шредингера		
Ç		100	12. Опыт Штер	на и Герлаха			
	0.04.54						
1(0:31:51	0	8. «Одноэлектр	<u>оонные» а</u> томы			
10			8. «Одноэлектр 11. Эффекты 3				

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Кромский С.Д.	312			. 12	_	2
Nº	Время	Правильность				_
	1 0:00:30		5. Гармоничесн	ий осциппятор		
•	2 0:02:39		10. Сверхтонка			
	3 0:04:02		4. Туннельный	. , , ,	I I I I I I I I I I I I I I I I I I I	
	0:04:50		1. Равновесное			
	0:06:29		7. Стационарн			<u> </u> 10
	0:13:00		11. Эффекты 3		•	121
	7 0:18:44		2. Волны деБр		na-baka	
	0:10:44		12. Опыт Штер			
	0:20:33			•	Шропингоро	
10			6. Нестационар 9. Правила Хун		шредингера	
1					 	
			3. Прямоуголы		ная яма	
12			8. «Одноэлектр		_	
Назаров А.В.	312	36		12	5	4
Nº	Время	Правильность			111	
	0:01:13		6. Нестационар			
	0:01:36		11. Эффекты 3			
	0:06:09	0	10. Сверхтонка	ія структура ато	мных спектров	
	0:13:45		12. Опыт Штер			
	0:16:34		5. Гармоничесь	•		
	0:21:27		8. «Одноэлектр			
	7 0:22:49	100	7. Стационарні	ые и нестацион	арные состояни	1Я
	0:24:19	0	3. Прямоуголы	ная потенциаль	ная яма	
(0:28:29	33	2. Волны деБр	р плис		
10	0:28:45	33	1. Равновесное	е тепловое излу	чение	
1.	0:30:31	100	9. Правила Хун	нда		
1:	0:32:24	0	4. Туннельный	эффект		
Цурукин А.А.	312	36	16	12	5	2
Nº	Время	Правильность	Раздел			
	0:01:33		2. Волны деБр	риля		
,	0:02:18		4. Туннельный			
	3 0:07:19		10. Сверхтонка		мных спектров	
	1 0:08:37		1. Равновесное			
	0:11:25		6. Нестационар			
	0:14:55		7. Стационарн			I
	7 0:22:33		11. Эффекты 3		•	
	0:24:31		9. Правила Хун		na Baka	
	0:28:53		3. Прямоуголы		lad dwa	
10			8. «Одноэлектр			
1			5. Гармоническ			
1:			12. Опыт Штер			
Карабатыров А.А.	313	36		12	3	
№		Правильность		12	3	4
INA	Время 1 0:06:37					
			8. «Одноэлектр			<u> </u>
	0:08:26		7. Стационарні		•	
	0:11:54		10. Сверхтонка			
	0:21:12		3. Прямоуголы		ная яма	
	0:22:48		9. Правила Хун		<u> </u>	
	0:31:06		6. Нестационар			
	7 0:35:17		1. Равновесное			
	0:41:21		11. Эффекты 3		ена-Бака	
	0:46:36	100	12. Опыт Штер	на и Герлаха		
10	0:50:18		5. Гармоничесь			
	0.50.40			-×		
1 ⁻	0:53:49	l 0	2. Волны деБр	риля		

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Овешников Л.Н.	313	36	29	12	9	4
Nº	Время	Правильность	_			-
	1 0:06:29	•	4. Туннельный	эффект		
	2 0:08:57		1. Равновесное			
	3 0:11:40		2. Волны деБр		1011110	
	4 0:15:18		3. Прямоуголы		Had awa	
	5 0:17:32		9. Правила Хун		TIGAT AINIG	
	6 0:18:15		5. Гармоническ			
	7 0:21:01		10. Сверхтонка			
	0:21:01		8. «Одноэлектр			
	9 0:28:09					
1			11. Эффекты 3			10
	_		7. Стационарн			1Я Т
1			6. Нестационар		: шредингера Т	
1			12. Опыт Штер			
Сладков А.Д.	313	36		12	3	2
Nº	Время	Правильность				
	1 0:04:00		7. Стационарн		•	19
	2 0:06:54		3. Прямоуголы			
	3 0:12:29		1. Равновесное		/чение	
	0:17:44	0	4. Туннельный	эффект		
	0:20:05	33	2. Волны деБр	ойля		
	6 0:22:58	100	9. Правила Хун	нда		
	7 0:23:36		5. Гармоничесь			
	0:29:15		6. Нестационар			
	9 0:33:16		10. Сверхтонка			
1			8. «Одноэлектр			
1			11. Эффекты 3			
1			12. Опыт Штер		Jila Baka	
Ульянов Е.В.	313	36		12	9	1
Nº	Время	Правильность		12	3	7
1/12	1 0:05:23		1. Равновесное	700000000000000000000000000000000000000	(11011140	
	2 0:06:21				Т	
			2. Волны деБр			
	3 0:07:08		8. «Одноэлектр			
	0:09:23		9. Правила Хун			
	5 0:11:13		7. Стационарн			19
	6 0:27:47		6. Нестационар		шредингера	
	7 0:32:11		12. Опыт Штер			
	8 0:36:02		10. Сверхтонка		•	
	9 0:44:19		3. Прямоуголы		ная яма	
1			4. Туннельный			
1			11. Эффекты 3			
1			5. Гармоничесь			
Хаджийский Ф.Ю.	313	36		12	7	3
Nº	Время	Правильность	Раздел			
	0:06:39	100	1. Равновесное	е тепловое излу	/чение	
	0:10:45	33	6. Нестационар	оное уравнение	Шредингера	
	3 0:14:26		4. Туннельный			
	0:19:34		12. Опыт Штер			
	5 0:21:58		10. Сверхтонка		мных спектров	
	6 0:30:28		11. Эффекты 3			
	7 0:31:31		5. Гармоничесн			
	8 0:36:48		7. Стационарні			19
	9 0:39:21		8. «Одноэлектр			<u> </u>
1			9. Правила Хун			
1			2. Волны деБр			
					llog gMC	
1	0:48:53	l 0	3. Прямоуголы	тая потенциаль	пан ний	

Страница 15 из 19

Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
313	36	27	12	8	4
					-
		•			
				шредингера	
		•		MULIX CHAVENOR	
				арные состояни І	IЯ
				L	
			12	4	2
	•				
				арные состояни	19
0:30:31	100	2. Волны деБро	Р В В В В В В В В В В В В В В В В В В В		
0:31:48	0	5. Гармоническ	кий осциллятор		
0:34:24	0	10. Сверхтонка	я структура атс	мных спектров	
0:41:17	100	11. Эффекты 3	веемана и Паше	ена-Бака	
0:44:48					
					2
					_
			ле и нестапион	арные состояни	I
					<u> </u>
				I Шпелингера	
				шредингера	
				(11011110	
				эна-рака Г	
				_	_
			12	6	3
0:07:20		7. Стационарны			
	100	10. Сверхтонка		мных спектров	
0:09:10					· -
0:14:33	33	3. Прямоугольн		ная яма	
	33			ная яма	
0:14:33	33 100	3. Прямоугольн	на и Герлаха	ная яма	
0:14:33 0:21:42	33 100 100	3. Прямоугольн 12. Опыт Штер	на и Герлаха эффект	ная яма	
0:14:33 0:21:42 0:24:52	33 100 100 100	3. Прямоугольн 12. Опыт Штер 4. Туннельный	на и Герлаха эффект ойля		
	313 Время 0:02:22 0:03:31 0:07:28 0:16:58 0:19:07 0:21:53 0:23:25 0:25:50 0:36:00 0:38:49 0:40:00 313 Время 0:01:49 0:02:59 0:09:57 0:19:15 0:24:02 0:30:31 0:31:48 0:34:24 0:41:17 0:44:48 0:45:34 0:49:39 314 Время Время 0:03:25 0:12:37 0:20:12 0:29:26 0:39:25 0:12:37 0:20:12 0:29:26 0:34:20 0:39:42 0:47:32 0:49:40 0:53:44 0:57:23 0:59:38 1:01:56 314 Время 0:03:28 0:04:05 0:05:36	313 36 Время Правильность 0:02:22 100 0:03:31 100 0:07:28 100 0:16:58 33 0:19:07 100 0:21:53 100 0:25:33 100 0:25:33 100 0:25:50 33 0:36:00 100 0:38:49 33 0:40:00 100 313 36 Bpems Правильность 0:01:49 33 0:02:59 100 0:09:57 0 0:19:15 100 0:24:02 0 0:30:31 100 0:31:48 0 0:34:24 0 0:41:17 100 0:44:48 33 0:45:34 33 0:49:39 0 314 36 Bpems Правильность 0:03:25 33	313 36 27	Время	Время Правильность Раздел

Страница 16 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка	
Лукиных С.Н.	314	36	21	12	5	3	
Nº	Время	Правильность					
	0:01:47		9. Правила Хун	іда			
	0:06:41			1. Равновесное тепловое излучение			
	3 0:20:38		3. Прямоуголы				
	0:21:14		5. Гармоническ				
	0:23:41		10. Сверхтонка				
	0:27:34		11. Эффекты 3				
	7 0:38:41		2. Волны деБро				
	3 0:38:59		6. Нестационар		Шредингера		
	0:41:45		4. Туннельный				
10			7. Стационарн		арные состояни	1Я	
1			8. «Одноэлектр				
1:			12. Опыт Штер				
Григорьев И.О.	315	36	•	12	4	2	
Nº	Время	Правильность			-	_	
	1 0:07:32		4. Туннельный	эффект			
	2 0:13:47		3. Прямоуголы		ная яма		
	3 0:19:08		10. Сверхтонка				
	1 0:25:54		2. Волны деБро				
	0:38:26		6. Нестационар		Шредингера		
	0:41:48		9. Правила Хун		родоро		
	7 0:42:38		1. Равновесное		I		
	0:43:25		5. Гармоническ				
	0:43:41		12. Опыт Штер				
10			7. Стационарн		SUPPIE CUCTUANI	l	
1			11. Эффекты 3			и	
1:			8. «Одноэлектр				
Шалимов В.О.	315	36		12		2	
Nº	Время	Правильность		12			
142	0:01:58		3. Прямоуголы	І ІЗО ПОТЕЦІИЗПЬ	L Пад дма		
	0:04:56		9. Правила Хун		Пал ліма		
	0:04:30		6. Нестационар	• •	IIInелингера		
	0:17:03		2. Волны деБр		шредингера		
	0:17:03		10. Сверхтонка		MULIV CHAVTOOR		
	0:30:20		7. Стационарн	.,,,			
	7 0:36:11		4. Туннельный		арпыс состояни	1/1	
	0:30:11		5. Гармоническ				
	0:43:59		1. Равновесное	•			
10			8. «Одноэлектр				
1			11. Эффекты 3				
1:			12. Опыт Штер		na baka		
Баркова А.В.	316	36		12	5	2	
раркова А.Б. №	Время	Правильность		12	3	3	
· · ·	1 0:02:28		4. Туннельный	эффект			
	0:02:20		3. Прямоуголы	<u> </u>	L Над дма		
	0:03:37		2. Волны деБр		Hazi ziivia		
	0:15:11		8. «Одноэлектр				
	0:17:43		12. Опыт Штер				
	0:17:43		10. Сверхтонка		MHPIX CUENTUCE		
	7 0:34:42		6. Нестационар				
9	0:35:22		9. Правила Хун		шродингера		
	0:37:33		7. Стационарн		ADULIA COCTOGUI	<u> </u> 1a	
10			1. Равновесное			1/1	
1			1. Эффекты 3				
1:							
1.	0:49:04	100	5. Гармоническ	ми осциппятор			

Страница 17 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Давыдов А.Б.	316	36	24	12	8	3
Nº	Время	Правильность	Раздел			
	1 0:03:10	100	7. Стационарні	ые и нестацион	арные состояни	1Я
	2 0:06:55	100	10. Сверхтонка	я структура ато	мных спектров	
	3 0:07:37	100	1. Равновесное	е тепловое излу	/чение	
	4 0:08:31		8. «Одноэлектр			
	5 0:13:26		3. Прямоуголы		ная яма	
	6 0:15:41		12. Опыт Штер			
	7 0:16:19		5. Гармоничесь			
	8 0:19:34		6. Нестационар		Шредингера	
	9 0:25:54		2. Волны деБр			
	0 0:30:32		9. Правила Хун		<u> </u>	
1			11. Эффекты 3		ена-Бака	
1			4. Туннельный			
Жданов М.А.	316	36	_	12	4	2
Nº	Время	Правильность				
	1 0:06:31		12. Опыт Штер		111	
	2 0:09:22		6. Нестационар			
	3 0:11:52		1. Равновесное	/		
	4 0:19:30 5 0:20:18		11. Эффекты 3		ена-рака Г	
			2. Волны деБр			
	6 0:22:08 7 0:25:17		8. «Одноэлектр			
	8 0:30:05		9. Правила Хун 3. Прямоуголы		LIOG GMO	
	9 0:33:16					
	0 0:34:15		10. Сверхтонка 5. Гармоническ			
<u> </u>			4. Туннельный			
<u> </u>			7. Стационарні		anulie coctogui	10
Ли Д.Л.	316	36		12		2
Nº	Время	Правильность	_		· ·	_
11-	1 0:02:56		10. Сверхтонка	ia ctoaktada ato	иных спектров	
	2 0:07:55		4. Туннельный			
	3 0:12:00		7. Стационарні		арные состояни	1Я
	4 0:13:14		11. Эффекты 3			
	5 0:16:47		5. Гармоническ			
	6 0:22:52		9. Правила Хун			
	7 0:30:42		8. «Одноэлектр			
	8 0:32:55		3. Прямоуголы			
	9 0:37:58	100	6. Нестациона	оное уравнение	Шредингера	
1	0 0:40:22	0	1. Равновесное	е тепловое излу	/чение	
1	1 0:42:43	0	2. Волны деБр	ойля		
1	2 0:52:06	0	12. Опыт Штер	на и Герлаха		
Николаев Э.О.	316	36	13	12	3	2
Nº	Время	Правильность	Раздел			
	1 0:01:02	0	8. «Одноэлектр	онные» атомы		
	2 0:02:19	33	6. Нестационар	оное уравнение	: Шредингера	
	3 0:05:14		10. Сверхтонка			
	4 0:08:00		1. Равновесное			
	5 0:11:28		3. Прямоуголы	· · · · · · · · · · · · · · · · · · ·	ная яма	
	6 0:34:00		2. Волны деБр			
	7 0:42:24		11. Эффекты 3		ена-Бака	
	8 0:49:57		4. Туннельный	• •		
	9 0:50:22		5. Гармоничесь			
	0 0:52:57		9. Правила Хун			
1			7. Стационарні		арные состояни	1Я
1			12. Опыт Штер			

Страница 18 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Селезнев О.В.	316	36	14	12	3	2
Nº	Время	Правильность				_
	1 0:12:27		11. Эффекты 3	веемана и Паше	на-Бака	
	2 0:14:41		10. Сверхтонка			
	3 0:14:59		7. Стационарн			
	4 0:16:06		9. Правила Хун			
	5 0:16:53		4. Туннельный			
	6 0:18:06		3. Прямоуголы		ная яма	
	7 0:27:15		8. «Одноэлектр			
	0:28:11		2. Волны деБр			
	9 0:28:39		1. Равновесное		L VUEHINE	
1			5. Гармоническ			
1			6. Нестационар			
1			12. Опыт Штер		шредингера	
Ачкасов А.Ю.	318	36	•	12	4	2
Nº	Время	Правильность		12	4	
1/12	1 0:00:45			OULUION STOMU		
			8. «Одноэлектр			
			1. Равновесное		чение	
	0:11:29 0:13:54		2. Волны деБро 9. Правила Хун			
				• •		
	0:23:54		10. Сверхтонка			
	6 0:32:40		5. Гармоническ			
	7 0:38:22		7. Стационарн			1Я
	8 0:40:51		6. Нестационар	•		
	9 0:42:44		3. Прямоуголы		ная яма	
1			12. Опыт Штер			
1			11. Эффекты 3		ена-Бака	
1			4. Туннельный			
Моторин С.В.	318	36	_	12	4	2
Nº	Время	Правильность				
	1 0:01:47		3. Прямоуголы			
	2 0:02:38		5. Гармоническ			
	3 0:04:28		6. Нестационар			
	4 0:08:44		1. Равновесное		<u>чение</u>	
	5 0:10:20		2. Волны деБро			
	6 0:17:27		10. Сверхтонка			
	7 0:24:20		11. Эффекты 3		ена-Бака	
	0:25:30		12. Опыт Штер	•		
	9 0:27:36		8. «Одноэлектр			
1			4. Туннельный	<u> </u>		
1			7. Стационарны		арные состояни	1Я
1			9. Правила Хун			
Харитонова А.С.	318	36		12	7	3
Nº	Время	Правильность				
	0:01:39		2. Волны деБр			
	2 0:05:39		3. Прямоугольн			
	3 0:07:38		7. Стационарны		арные состояни	19
	0:10:35		12. Опыт Штер			
	5 0:10:55		1. Равновесное	е тепловое излу	чение	
	6 0:15:04		8. «Одноэлектр			
	7 0:16:58		6. Нестационар			
	0:17:32		5. Гармоническ			
	9 0:19:19	100	10. Сверхтонка	я структура ато	мных спектров	
					· ·	
1	0:21:22	100	4. Туннельный	эффект		<u> </u>
1			4. Туннельный 11. Эффекты 3		I ена-Бака	

Страница 19 из 19

Фамилия И.О.	Группа №	Баллов	Набрано	Вопросов	Прав. отв.	Оценка
Шевченко Д.Ю.	318	36	17	12	4	2
Nº	Время	Правильность	Раздел			
1	0:00:50	33	4. Туннельный	эффект		
2	0:01:07	100	3. Прямоуголы	ная потенциаль	ная яма	
3	0:01:42	100	5. Гармоничес	кий осциллятор		
4	0:02:15			оонные» атомы		
5	0:02:37	33	11. Эффекты 3	Веемана и Паше	ена-Бака	
6	0:02:59	33	2. Волны деБр	ойля		
7	0:03:50	33	1. Равновесное	е тепловое излу	чение	
8	0:07:44			ая структура атс		
9	0:08:32			ые и нестацион	арные состояни	1Я
10	0:12:35		9. Правила Хун			
11	0:15:48			оное уравнение	Шредингера	
12	0:16:22		12. Опыт Штер	на и Герлаха		
Медведева А.А.	319	36	_	12	1	2
Nº	Время	Правильность				
1	0:01:15		9. Правила Хун			
2	0:07:29			оное уравнение		
3	0:13:18			кий осциллятор		
4	0:17:33			оонные» атомы		
5	0:20:25			е тепловое излу		
6	0:25:27			ная потенциаль	ная яма	
7	0:26:53		4. Туннельный			
8	0:29:23			ые и нестацион		
9	0:33:29			яя структура атс	мных спектров	
10	0:34:20		2. Волны деБр			
11	0:35:45			Веемана и Паше	на-Бака	
12	0:38:49	0	12. Опыт Штер	на и Герлаха		